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Flow and reaction in solid oxide fuel cells
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A fuel cell is an electrochemical device that converts chemical energy into electrical
energy. The essential difference between a fuel cell and a battery is that the fuel and
oxidant are continually supplied to a fuel cell whereas a battery has a finite amount
of fuel stored within it which eventually becomes exhausted, after which the battery
has to be recharged or replaced. We consider here a tubular cell which is run on
methane. A mathematical model for the reaction and transport processes in the cell
is presented. This takes into account diffusion, advection and reaction as well as the
electrochemical flow of oxygen. When the device is running steadily, we perform an
analysis, using the method of matched asymptotic expansions to find the flow field, the
mass fractions of each chemical species and the electrical power output. These results
are confirmed by a numerical technique and compared with experimental results.

1. Introduction
The fundamental chemical reaction in any fuel cell is that of hydrogen with oxygen.

This produces waste only in the form of water and heat, which can be used by a
heat engine as a secondary source of energy. This makes the fuel cell one of the
cleanest forms of energy production available and, given the need to reduce emissions
of greenhouse gases, makes the development of fuel cell technology an important
goal over the next few decades. Currently there is no infrastructure for large-scale
hydrogen production, so instead, methane (CH4) is used as a substitute. Methane can
either react directly with oxygen (partial oxidation) or can be converted to hydrogen
by a process called steam reforming. Methane is a convenient fuel to consume as
it is likely to become a significant pollutant in the next century. This is due to its
increased production as a consequence of the expected increase in world population
and the fact that it can absorb 25 times more infra-red radiation than carbon dioxide
(Blomen & Mugerwa 1993). Fuel cell systems already exist in parts of Japan and the
USA, and efficiencies of over 40% have been demonstrated. This can rise to 85%
if the resultant steam is used for cogeneration where the heat is also utilized. This
compares with efficiencies of around 30% for existing coal-fired power stations.

Various types of fuel cell are currently under development. The electrolyte in the
cell, and the mechanism by which charge is conducted in it are what sets different
fuel cells apart. For example, the polymer (or proton) electrolyte membrane fuel cell
(PEMFC), also known as the solid polymer fuel cell (SPFC), which can operate at
relatively low temperatures (60–150◦C), is being developed for use in the automobile
industry. The solid oxide fuel cell (SOFC) operates at much higher temperatures,
typically 600–1000◦C, which allows the use of more readily-available materials such
as nickel as a catalyst for the chemical reactions involved. The electrolyte is made from
a ceramic solid, zirconia (ZrO2), which has the property that at high temperatures it
can conduct oxygen ions. This is often chemically stabilized by doping with yttria.
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Figure 1. A diagram of the electrochemical principle behind the SOFC.
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Figure 2. A diagram of the tubular SOFC, showing how the components fit together.

Fuel reacts with oxygen on one side of the zirconia, leaving a deficiency of oxygen
molecules on that side while the other side is left exposed to the air, where the
atmospheric oxygen present results in an oxygen concentration gradient across the
zirconia, from high concentration on the air side to low concentration on the fuel side.
An electrical connection between two electrodes placed on either side allows electrons
to flow through a wire from the anode on the fuel side to the cathode on the air side,
with the flow of negatively-charged oxygen ions across the zirconia in between the
electrodes completing the circuit. This electrochemical principle is illustrated in figure
1. Any unburnt fuel is able to flow through the system and react with air to produce
waste heat which can be utilized to form a secondary source of power, adding to the
overall efficiency of the device.

There are currently two main configurations of the SOFC. The planar design
consists of the zirconia electrolyte in the shape of a flat disc or square with circular
electrodes on either side aligned such that the three components have a common
centre. A mathematical model of the gas flow and reactions for this configuration
was studied by Copcutt, King & Kendall (1996), and later refined by Billingham
et al. (1999) to include the effect of drawing a current from the cell. The second
configuration, the tubular cell, is constructed from tubes of zirconia with tubular
electrodes fitted onto the inner and outer surfaces, as illustrated in figure 2. The cell
we shall study (Kendall & Prica 1994), has the cathode on the outside and the anode
on the inside, with a gas feed flowing into the tube. This helps to solve the problem
of sealing one side from the other, although the arrangement has been successfully
inverted to have the fuel on the outside (Bratton 1994). The tubes of zirconia are
extruded from powders dispersed in polymer solutions to produce high thermal shock
resistance and greater resistance to mechanical shocks than existing planar and tubular
designs. The cathode is made from lanthanum strontium manganite and the anode
is a nickel zirconia cermet. Both electrodes are pasted on to the electrolyte, made
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Figure 3. A diagram of the tubular SOFC, with the coordinate system.

from yttria-stabilized zirconia. This structure allows the integration of the electrical
connections required to complete the circuit.

A diagram of the cell is shown in figure 3. The length l of the tube is 20 cm, and
the internal radius a is 0.9 mm. The length h of the electrodes is 1.3 cm. The thickness
of the zirconia electrolyte layer is of the order 10−6 m. An input mixture of methane
and steam is fed into the tube at a flow rate of 25 ml min−1 at room temperature
and immediately heated to the operating temperature of 1123 K. The molar fraction
of methane is 5 times that of water in the input gas. (When the exhaust gases are
sampled by a mass spectrometer a buffer of inert helium is added to the input
mixture to facilitate accurate measurements of the various mass fractions.) Methane
is converted to hydrogen by internal steam reforming, where the reforming process
takes place inside the cell with the other reactions rather than before the fuel mixture
is fed into the cell. Any unburnt fuel will in practice flow through the tube and react
with oxygen at the end of the tube to produce useful heat. We now assume that the
following reaction scheme:

CH4 + H2O

k1

k2
CO + 3H2, (1.1)

CO + H2O

k3

k4
CO2 + H2, (1.2)

2H2 + O2 

k5

k6
2H2O, (1.3)

2CO + O2 

k7

k8
2CO2, (1.4)

takes place on the anode surface. Reaction (1.1) is the steam reforming reaction,
which produces essential hydrogen from methane for use in the fundamental reaction
(1.3). The carbon monoxide produced in reforming can also be burnt with oxygen by
reaction (1.4). We will also consider the water gas shift reaction (1.2) which can occur
in conjunction with steam reforming. We will use reaction rate constants k1 − k8,
where k1 represents the forward steam reforming reaction, k2 the backwards reaction,
and k3 and k4 the forward and backward water gas shift reactions respectively and so
on. These reactions only take place on the surface of the anode on the inside of the
tube. This is due to the reliance on the presence of the nickel catalyst which forms
part of the anode composition. Oxygen molecules on the outside of the cell combine
at the cathode with electrons to form negatively charged oxygen ions. When the cell
is operating at sufficiently high temperatures, these oxygen ions can flow across the
zirconia electrolyte to the anode where they are converted back into molecular oxygen
and electrons. The process is summed up in the electrochemical equation

4O2− 
 2O2 + 8e−. (1.5)

The oxygen then reacts with the fuel via the fundamental surface reactions (1.3) and
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Figure 4. The temperature gradient along the axis of the tube. Operating temperature 1173 K,
tube length = 26 cm, length of anode = 18.5 cm.

(1.4), while the electrons are carried away by the electrical circuit. An important
feature of this cell, found experimentally, is that the cell temperature is spatially
isothermal over the chemically active region. A typical temperature profile is shown
in figure 4. Any temperature variations are small when compared with the background
temperature of over 1100 K. It is clear that the cell, which is housed inside a well
insulated furnace, is self-heating once the initial temperature transients have decayed
and it is running under steady-state conditions.

2. A mathematical model for the cell
2.1. A model for the electrochemical flux through the electrodes

In the cell the current density, or flux density of electrons, i(z) at any position z along
the axis of the tube, is directly proportional to the flux density of oxygen molecules,
qe(z), via

i(z) = 4Fqe(z), (2.1)

where F is the Faraday constant. Its typical value and those of the other physical
quantities, is given in table 1. The factor 4 represents the four electrons carried by the
two oxygen ions produced per oxygen molecule in the electrochemical reaction (1.5).
The local electrochemical potential E(z) is given by the Nernst equation (Blomen &
Mugerwa 1993),

E(z) =
RT

4F
ln

(
Coa

Co(z)

)
, (2.2)

where R is the gas constant, Co(z) is the local concentration of oxygen on the fuel
side of the zirconia electrolyte, Coa is the constant value of atmospheric oxygen
concentration on the air side and T is the absolute temperature of the cell. The cell
potential Ecell is related to the Nernst potential by

Ecell = E(z)− i(z)Rs. (2.3)

Rs is the specific resistance of the zirconia, defined as the product of the resistivity and
the electrolyte thickness. This equation is derived from Kirchhoff’s laws by considering
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Physical quantity Symbol Typical value

Internal radius of the tube a 0.9 mm
Length of the anode h 1.3 cm
Mass flow rate of the input gas Qin 0.0875×10−6 kg s−1

Input gas density ρin 0.0561 kg m−3

Atmospheric density ρa 0.326 kg m−3

Faraday’s constant F 9.6×104 coulomb mol−1

Gas constant R 8.3 J K−1 mol−1

Temperature T 1123 K
Cell voltage Ecell 0.4–1 V
Specific resistance of zirconia Rs 1.707×10−4 Ωm2

Mass fraction of oxygen in the atmosphere Yoa 0.2325
Molar mass of each chemical species mi mf = 0.016 kg mol−1

mw = 0.018 kg mol−1

mh = 0.002 kg mol−1

mm = 0.028 kg mol−1

md = 0.044 kg mol−1

mo = 0.032 kg mol−1

Gas diffusivity D 10−4 m2 s−1

Viscosity µ 5×10−5 kg m−1 s−1

Table 1. Physical quantities, their symbols and typical values.

the cell as many small elements, each of which can be thought of as a local battery
with its own resistance. The resistivity will in practice include the resistive effect of
the electrodes. We will be able to obtain a value for Rs by fitting to experimental
data. Combining (2.1), (2.2) and (2.3) we are able to obtain an expression for the flux
density of oxygen ions through the zirconia in terms of the oxygen concentration and
various parameters:

qe(z) =
RT

16F2Rs

(
ln

(
Coa

Co(z)

)
− 4F

RT
Ecell

)
H(z), (2.4)

where H(z) = H(z)−H(z − h) is a composite Heaviside function that appears because
the electrochemical reaction is confined to the region under the electrodes (06z6h).
By integrating (2.3) over the area of the electrodes we can obtain an expression for

the overall current I , where I =
∫ 2π

θ=0

∫ h
z=0

a i(z) dz dθ, and after using equation (2.2)
we obtain

IRI =
RT

4Fh

∫ h

0

ln

(
Coa

Co

)
dz − Ecell , (2.5)

where RI = Rs/2πah is the total internal resistance of the zirconia and the elec-
trodes. Note that this expression is similar to Ecell = E − IRI , which corresponds
to an ordinary battery, although in this case Co(z) is a nonlinear function of the
current I .

2.2. Conservation of mass and momentum

We work with the mass fraction Yi of each chemical species in the mixture, which is
related to its concentration Ci and the mixture density ρ by

Yi =
miCi

ρ
, (2.6)
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where mi is the molecular mass of species i. We will study the six species involved
in the reaction scheme, and use the following subscripts for i to denote each species:
f (fuel-methane), w (water), o (oxygen), h (hydrogen), m (carbon monoxide) and d
(carbon dioxide).

The expression for conservation of mass in the bulk mixture is

∇ · (ρv) = 0, (2.7)

where v is the velocity of the gas mixture and the right-hand side is equal to 0 because
there is no chemical reaction in the main flow (Buckmaster & Ludford 1982). We will
assume that a steady state has been reached, so that there are no time derivatives in
these equations. The equation for conservation of mass for each individual species Yi
is

∇ · (ρYiv)− ρinD∇2Yi = 0, (2.8)

where ρin is the density of the input mixture and D is the diffusivity, which we will
assume is constant and equal for all species.

The equation for conservation of momentum can be written as

ρ(v · ∇)v = −∇p+ µ∇2v + 1
3
µ∇(∇ · v), (2.9)

where µ is the coefficient of viscosity for the mixture of gases, and p is the mixture
pressure. Finally we will assume that each chemical species satisfies a gas law of the
form pi = ρRTYi/mi. Then Dalton’s law of partial pressures gives

p = ρRT
∑
i

Yi

mi
. (2.10)

These equations are to be solved in the cylindrical coordinate system shown in figure
3. We will assume that the solution is axisymmetric, so that the fluid velocity has only
radial and axial components.

2.3. Boundary conditions

The input gas is composed of methane and water only. Hence the conditions at the
inlet of the tube are

Yf = Yf(in), Yw = Yw(in), Yh = Ym = Yd = Yo = 0 at z = (h− l)/2 for 0 6 r 6 a,

(2.11)

where Yf(in) and Yw(in) represent the input mass fractions of methane and water, and
Yf(in) + Yw(in) = 1. Along the axis of the tube we have no flux of any species and no
radial velocity so that

∂Yi

∂r
= 0 at r = 0 for (h− l)/2 6 z 6 (h+ l)/2. (2.12)

We also have a set of mass-flux boundary conditions that model the reaction and
transport processes taking place at the surface of the anode. At this surface the
amount of each species that is created or consumed by chemical reaction must be
balanced by the amount transported by diffusion and radial advection. The mass-flux
boundary conditions are therefore

ρinD
∂Yf

∂r
− ρYfvr =

(
−k1ρ

2YfYw

mw
+
k2ρ

4Y 3
h Ymmf

m3
hmm

)
H(z), (2.13)
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ρinD
∂Yw

∂r
− ρYwvr =

(
−k1ρ

2YfYw

mf
+
k2ρ

4Y 3
h Ymmw

m3
hmm

− k3ρ
2YmYw

mm

+
k4ρ

2YdYhmw

mdmh
+

2k5ρ
3Y 2

h Yomw

m2
hmo

− 2k6ρ
2Y 2

w

mw

)
H(z), (2.14)

ρinD
∂Yh

∂r
− ρYhvr =

(
3k1ρ

2YfYwmh

mfmw
− 3k2ρ

4Y 3
h Ym

m2
hmm

+
k3ρ

2YmYwmh

mmmw

−k4ρ
2YdYh

md
− 2k5ρ

3Y 2
h Yo

mhmo
+

2k6ρ
2Y 2

wmh

m2
w

)
H(z), (2.15)

ρinD
∂Ym

∂r
− ρYmvr =

(
k1ρ

2YfYwmm

mfmw
− k2ρ

4Y 3
h Ym

m3
h

− k3ρ
2YmYw

mw

+
k4ρ

2YdYhmm

mdmh
− 2k7ρ

3Y 2
mYo

mmmo
+

2k8ρ
2Y 2

d mm

m2
d

)
H(z), (2.16)

ρinD
∂Yd

∂r
− ρYdvr =

(
k3ρ

2YmYwmd

mmmw
− k4ρ

2YdYh

mh
+

2k7ρ
3Y 2

mYomd

m2
mmo

− 2k8ρ
2Y 2

d

md

)
H(z),

(2.17)

ρinD
∂Yo

∂r
− ρYovr =

(
moqe(z)− k5ρ

3Y 2
h Yo

m2
h

+
k6ρ

2Y 2
wmo

m2
w

− k7ρ
3Y 2

mYo

m2
m

+
k8ρ

2Y 2
d mo

m2
d

)
H(z),

(2.18)

where we have used the law of mass action to represent the rates of reaction. By
adding together these equations, noting that

∑
i Yi = 1 and hence

∑
i ∂Yi/∂r = 0, we

find that

−ρvr = moqe(z) at r=a, (2.19)

and we can substitute this back into the left-hand side of the mass-flux boundary
conditions. We also have a condition for the inflow at the beginning of the tube,
z = (h− l)/2,

Qin =

∫ 2π

θ=0

∫ a

r=0

ρinvzr dr dθ, (2.20)

where Qin is the rate of mass flux at the inlet of the tube. In addition, we have the
no-slip condition in the axial direction for the fluid at the anode surface, as well as
the no radial flux condition at the central axis of the tube given by

vz = 0 at r = a for (h− l)/2 6 z 6 (h+ l)/2, (2.21)

vr = 0 at r = 0 for (h− l)/2 6 z 6 (h+ l)/2. (2.22)

2.4. Non-dimensionalization

We begin the non-dimensionalization of the equations for conservation of mass and
momentum by choosing scales based on the dimensions of the tube and other physical



240 R. J. Cooper, J. Billingham and A. C. King

constants,

z̄ =
z

h
, r̄ =

r

a
, ρ̄ =

ρ

ρin
, v̄z =

vzρinπa
2

Qin
,

v̄r =
vrρinπah

Qin
, m̄i =

mi

mf
, p̄ =

πρina
4(p− pin)
hµQin

.

 (2.23)

Note that our scaling of the axial distance with the electrode length h, which is
small compared with the length of the whole cell, allows us to treat the cell as an
infinitely-long tube described by the domain 0 6 r̄ 6 1 and −∞ < z̄ < ∞ at leading
order. The electrode region is then defined by 0 6 z̄ 6 1. The conservation-of-mass
equation for the whole mixture (2.7), assuming a steady axisymmetric flow, becomes

1

r

∂

∂r
(rρvr) +

∂

∂z
(ρvz) = 0, (2.24)

and the conservation-of-mass equation for each individual species (2.8) becomes

Q

(
1

r̄

∂

∂r̄
(r̄ρ̄Yiv̄r) +

∂

∂z̄
(ρ̄Yiv̄z)

)
− 1

r̄

∂

∂r̄

(
r̄
∂Yi

∂r̄

)
− ε2 ∂

2Yi

∂z̄2
= 0. (2.25)

The dimensionless equations for conservation of momentum are

ρ̄ε2Re

(
v̄z
∂v̄r

∂z̄
+ v̄r

∂v̄r

∂r̄

)
= −1

ε

∂p̄

∂r̄
+
ε

3

(
4

r̄

∂v̄r

∂r̄
+ 4

∂2v̄r

∂r̄2
− 4

r̄2
v̄r +

∂2v̄z

∂r̄∂z̄
+ 3ε2 ∂

2v̄r

∂z̄2

)
,

(2.26)

ρ̄εRe

(
v̄z
∂v̄z

∂z̄
+ v̄r

∂v̄z

∂r̄

)
= −∂p̄

∂z̄
+ 1

3
ε2

(
4
∂2v̄z

∂z̄2
+
∂2v̄r

∂r̄∂z̄
+

1

r̄

∂v̄r

∂z̄

)
+

1

r̄

∂v̄z

∂r̄
+
∂2v̄z

∂r̄2
,

(2.27)

and the dimensionless pressure, from (2.10), satisfies

p̄ =
γ − 1

γP

(
ρ̄
∑
i

Yi

m̄i
−∑

i

Yi(in)

m̄i

)
. (2.28)

The dimensionless constants that appear in these and the remaining equations are
defined in table 2, along with their typical values. The dimensionless form of the
boundary conditions (2.11) and (2.12) is

Yf → Yf(in), Yw → Yw(in), Yh, Ym, Yd, Yo → 0 as z̄ → −∞ for 0 6 r̄ 6 1, (2.29)

∂Yi

∂r̄
= 0 at r̄ = 0 for −∞ < z̄ < ∞. (2.30)

The dimensionless mass-flux boundary conditions at r̄ = 1 are

δ

(
∂Yf

∂r̄
+ Yfq̄eE

)
= ε2

(
− ρ̄

2YfYw

m̄w
+
k̄2ρ̄

4ρ2
inY

3
h Ym

m̄3
hm̄mm

2
f

)
H(z), (2.31)

δ

(
∂Yw

∂r̄
+ Ywq̄eE

)
= ε2

(
−ρ̄2YfYw +

k̄2ρ̄
4ρ2

inY
3
h Ymm̄w

m̄3
hm̄mm

2
f

− k̄3ρ̄
2YmYw

m̄m

+
k̄4ρ̄

2YdYhm̄w

m̄dm̄h
+

2k̄5ρ̄
3ρinY

2
h Yom̄w

m̄2
hm̄omf

− 2k̄6ρ̄
2Y 2

w

m̄w

)
H(z), (2.32)
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δ

(
∂Yh

∂r̄
+ Yhq̄eE

)
= ε2

(
3ρ̄2YfYwm̄h

m̄w
− 3k̄2ρ̄

4ρ2
inY

3
h Ym

m̄2
hm̄mm

2
f

+
k̄3ρ̄

2YmYwm̄h

m̄mm̄w

− k̄4ρ̄
2YdYh

m̄d
− 2k̄5ρ̄

3ρinY
2
h Yo

m̄hm̄omf
+

2k̄6ρ̄
2Y 2

w m̄h

m̄2
w

)
H(z), (2.33)

δ

(
∂Ym

∂r̄
+ Ymq̄eE

)
= ε2

(
ρ̄2YfYwm̄m

m̄w
− k̄2ρ̄

4ρ2
inY

3
h Ym

m̄3
hm

2
f

− k̄3ρ̄
2YmYw

m̄w

+
k̄4ρ̄

2YdYhm̄m

m̄dm̄h
− 2k̄7ρ̄

3ρinY
2
mYo

m̄mm̄omf
+

2k̄8ρ̄
2Y 2

d m̄m

m̄2
d

)
H(z), (2.34)

δ

(
∂Yd

∂r̄
+ Ydq̄eE

)
= ε2

(
k̄3ρ̄

2YmYwm̄d

m̄mm̄w
− k̄4ρ̄

2YdYh

m̄h

+
2k̄7ρ̄

3ρinY
2
mYom̄d

m̄2
mm̄omf

− 2k̄8ρ̄
2Y 2

d

m̄d

)
H(z), (2.35)

δ

(
∂Yo

∂r̄
+ (Yo − 1)q̄eE

)
= ε2

(
− k̄5ρ̄

3ρinY
2
h Yo

m̄2
hmf

+
k̄6ρ̄

2Y 2
w m̄o

m̄2
w

− k̄7ρ̄
3ρinY

2
mYo

m̄2
mmf

+
k̄8ρ̄

2Y 2
d m̄o

m̄2
d

)
H(z), (2.36)

where q̄e = −(σ + ln (ρ̄Yo))H(z̄) and k̄i = ki/k1. The dimensionless parameter δ is
defined as δ = aDmf/k1h

2ρin. This parameter is small as the steam reforming reaction
rate constant k1 is large (at least ≈ 1012 m4 s−1 mol−1) and so we can expect a
situation similar to an earlier study (Rubinstein, Sternberg & Keller 1989) where
reaction dominates over diffusion. The sum of the mass-flux boundary conditions
(2.19) becomes

ρ̄v̄r = −Eqe
Q

at r̄ = 1 for −∞ < z̄ < ∞, (2.37)

and the inflow condition (2.20) becomes∫ 1

0

r̄v̄z dr̄ → 1
2

as z̄ → −∞ for 0 6 r̄ 6 1. (2.38)

Finally, the no-slip and no-radial-flux conditions for the mixture velocity (2.21), (2.22)
are expressed in dimensionless form as

v̄z = 0 at r̄ = 1 for −∞ < z̄ < ∞ (2.39)

v̄r = 0 at r̄ = 0 for −∞ < z̄ < ∞. (2.40)

For convenience, in the rest of this paper we will omit the overbar from dimensionless
variables and constants.

2.5. Solution of the conservation of momentum equations for ε� 1

We will now make use of the small dimensionless parameter ε, whose size reflects the
fact that the flow takes place in a long, slender tube. The equations for conservation
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Symbol Definition Typical value Description

ε
a

h
0.06923 aspect ratio

σ
4F

RT
Ecell − ln

(
ρaYoa

ρin

)
16.2–40.9

cell potential
electrochemical potential

Q
Qin

πhρinD
0.382 fuel flowrate

rate of diffusion

E
amoRT

16F2RsρinD
1.90× 10−3 electrochemical flux of oxygen

diffusive flux of oxygen

δ
aDmf

k1h2ρin
O(10−23)–O(10−17) rate of diffusion

rate of reaction

Re
Qin

aµπ
0.6187 Reynolds number = inertial forces

viscous forces

m̄i
mi

mf
mo = 2 molar mass

molar mass of methane

γ cp

/(
cp − R

mf

)
1.1 ratio of specific heats

P
µQinh

a4πρ2
inTcp

0.1369×10−5 compressive energy
thermal energy

Table 2. Definitions and typical values of the dimensionless parameters.

of momentum, (2.26) and (2.27), show that at leading order as ε→ 0

∂p

∂r
= 0,

∂p

∂z
=

1

r

∂vz

∂r
+
∂2vz

∂r2
. (2.41)

These equations are to be solved subject to the boundary conditions (2.37)–(2.40).
This lubrication approximation, along with the conservation-of-mass equation,

1

r

∂

∂r
(rρvr) +

∂

∂z
(ρvz) = 0, (2.42)

can be directly integrated to give

p = p(z), (2.43)

vz =
E

Q

(
r2 − 1

)
(∫ z

0

qe(s) ds+
Q

2E

)
∫ 1

0

(
s3 − s) ρ(s, z) ds

, (2.44)

vr = − E

Qρr

∂

∂z


(∫ z

0

qe(s) ds+
Q

2E

)(∫ r

0

(
s3 − s) ρ(s, z) ds

)
∫ 1

0

(
s3 − s) ρ(s, z) ds

 . (2.45)

We will now introduce the notation MR =
∫ R

0

(
s3 − s) ρ(s, z) ds, in order to simplify

future expressions. This quantity is related to the axial mass flux between r= 0 and
R. The velocity components can be substituted into the mass conservation equation
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for each species (2.25). After re-arrangement we obtain,

−1

r

∂

∂r

(
r
∂Yi

∂r

)
+

1

2
Q0ε

[(
r2 − 1

) ∂
∂z

(
ρYi

M1

)
− 1

r

∂

∂r

(
Yi
∂

∂z

(
Mr

M1

))]
+ε2

(
E0

[(
r2 − 1

) ∂
∂z

(
ρYi

M1

∫ z

0

qe(s) ds

)
−1

r

∂

∂r

(
Yi
∂

∂z

(
Mr

M1

∫ z

0

qe(s) ds

))]
− ∂2Yi

∂z2

)
= 0. (2.46)

Here we have used experimental data, which suggest that Q = O(ε) and E = O(ε2).
Hence we make the substitutions Q = Q0ε, E = E0ε

2 where Q0 and E0 are O(1).

3. Asymptotic solution for δ � 1, ε� 1

We will now proceed to solve the mass continuity equation (2.46) for the boundary
conditions (2.29)–(2.36). We will express each mass fraction in terms of a perturbation
series in ε and δ of the form

Yi = Yi0 + εYi1 + ε2Yi2 + · · ·+ δ

ε2
Ȳ i0 +

δ

ε
Ȳ i1 + O(δ). (3.1)

We will soon see that the magnitudes of ε and δ allow us to use this form of expansion,
and that it is necessary to consider the terms up to O(δ). In a similar fashion we
also expand the quantities ρ, Mr and M1 as perturbation series. P is another small
parameter, reflecting the fact that the thermal energy stored in the mixture of gases is
far greater than the compressive energy. For typical values of the various quantities
involved P = O(ε5). For P � 1 we have at leading order an expression for ρ in terms
of the mass fractions, given by the dimensionless pressure equation (2.28),

ρ =
∑
i

Yi(in)

mi

/∑
i

Yi

mi
. (3.2)

It is now our aim to solve the dimensionless boundary value problem and find
values for the mass fractions downstream of the anode. We should then be able to
make predictions about the current drawn for different values of the voltage. Since
δ is extremely small we can expect an asymptotic approach to be successful, and
so we shall consider the double limiting process δ → 0, ε → 0. This is relatively
straightforward as ε = O(10−2) and δ = O(10−17) so that δ = o(εn) for 06 n6 8. As
we solve the conservation-of-mass equations only up to O(ε2) there will be no clash
of limits.

Clearly, from the discontinuous nature of the electrochemistry and chemical reac-
tions we should begin by considering the solution in three main regions: upstream
of the anode, before any of the chemical processes have acted on the fluid; on the
anode itself, where the reactions take place; and downstream of the anode, where we
expect the final values of each mass fraction to emerge. We will find that we also need
boundary layers at the beginning and end of the anode region. The overall asymptotic
structure of the solution is shown in table 3, which also shows the orders of magnitude
of the mass fractions in each region. Experimental measurements indicate that the
mass fractions of methane, hydrogen and carbon monoxide are of O(1) at output
(z → ∞), while we know that, since the input mixture is composed only of methane
and water, our model must allow for a decrease in water and an increase from zero
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Anode front Anode back
Upstream of boundary layer boundary layer Downstream of
anode, z < 0 width O(ε) Anode region, 0 < z < 1 width O(ε) anode, z > 1

Yf = Yf(in) Yf = O(1) Yf = O(1) Yf = O(1) Yf = O(1)

Yw = Yw(in) Yw = O(1) Yw = O(δ) Yw = O(δ) Yw = O(δ)

Yh = 0 Yh = O(1) Yh = O(1) Yh = O(1) Yh = O(1)

Ym = 0 Ym = O(1) Ym = O(1) Ym = O(1) Ym = O(1)

Yd = 0 Yd = O(δ) Yd = O(δ) Yd = O(δ) Yd = O(δ)

Yo = 0 Yo = O(δ) Yo = O(δ) Yo = O(δ) Yo = O(δ)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
z = 0 z = 1

anode
← →
Table 3. The asymptotic structure of the solution.

at input to O(1) at output for hydrogen and carbon monoxide. We find that the final
orders of magnitude for each mass fraction are reached before the O(1) anode region.

We will also neglect the reactions corresponding to rate constants k2, k3, k6 and k8.
This is a valid assumption to make and has been verified experimentally. Although
experimental data are scarce, we can expect the remaining four reaction rate constants
to be of similar order. Hence our scaling of each constant with the steam reforming
rate constant k1 provides us with O(1) quanities k̄i. We will use the typical values
k1 = k4 = k5 = k7 = 1015 m4 s−1 mol−1. Next we will define a new dimensionless
parameter σ̄ as

σ̄ = −σ − ln δ (3.3)

and we will assume that σ̄ = O(1) for δ � 1. This parameter arises when we find that
the oxygen mass fraction is no larger than O(δ), i.e. Yo = δYo1 +O(δε). We can think
of this assumption as focusing on the range of parameters for which σ = − ln δ+O(1)
for δ � 1. This makes the dimensionless flux of oxygen ions qe0 = σ̄ − ln (ρ0Yo1) at
leading order.

3.1. Solution in the upstream region z < 0

Upstream of the anode there is no electrochemistry or chemical reaction so the mass-
flux boundary conditions (2.31)–(2.36) reduce to ∂Yi/∂r = 0 at r = 1. There is also the
condition ∂Yi/∂r = 0 at r = 0. The conservation-of-mass equations are also simplified
and a study of the leading-order and O(ε) equations gives constant solutions for the
leading order parts of all six mass fractions and hence the density. Therefore these
constant values must be equal to the input values as z → −∞. Hence we have the
simple leading-order solution

Yf = Yf(in), Yw = Yw(in), Yh = Ym = Yd = Yo = 0, ρ = 1 for z < 0, (0 6 r 6 1).

(3.4)

If we next consider the solution in the anode region given by 0 6 z 6 1, where the
electrochemical source of oxygen appears, an analysis of the boundary conditions
leads us to the conclusion that the leading-order term in the water mass fraction Yw0

must be zero. Further investigation shows that all lower-order terms must also be
zero until a reaction term balances with a diffusive term. This will happen at O(δ/ε2).
Hence there must be a boundary layer centred at z = 0, in order to allow a drop
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in the order of magnitude of the water mass fraction from O(1) upstream of the
anode to O(δ/ε2) in the anode region. Due to the dominance of reaction processes
over diffusion we can be sure that δ is far smaller than ε. We assume that δ = O(εµ),
where µ > 8 and expand Yw as

Yw = Yw0 +εYw1 +ε2Yw2 + · · ·+εµ−3Yw,µ−3 +
δ

ε2
Ȳ w0 +

δ

ε
Ȳ w1 +δȲ w2 +δεȲ w3 + · · · (3.5)

with Ywj = 0 at r = 1 for j = 0, 1, . . . , µ− 3.

3.2. Solution in the boundary layer at z = 0

In this region z = O(ε) and we expect Yf , Yh and Ym to be of O(1) and Yw = O(δ/ε2)
at the downstream end of this layer. We find that the mass fractions of oxygen and
carbon dioxide are small and so we write Yi = δYi1 + δεYi2 + O(δε2) for these two
species. We define a scaled boundary layer variable as z = εz̄ where z̄ = O(1) and in
terms of this variable, the mass conservation equation (2.46) becomes

−1

r

∂

∂r

(
r
∂Yi0

∂r

)
+
Q0

2

[(
r2 − 1

) ∂
∂z̄

(
ρ0Yi0

M10

)
− 1

r

∂

∂r

(
Yi0

∂

∂z̄

(
Mr0

M10

))]
− ∂2Yi0

∂z̄2
= 0,

(3.6)

where MR0 =
∫ R

0
(s3 − s)ρ0(s, z̄) ds. This is to be solved for −∞ < z̄ < ∞, 0 6

r 6 1 subject to the conditions obtained from matching with the upstream solution
(3.4), Yf0 → Yf(in), Yw0 → Yw(in), Yh0, Ym0, Yd0, Yo0 → 0 as z̄ → −∞, and the condition
∂Yi0/∂r = 0 at r = 0. At r = 1, because the boundary layer is centred at the point
where the electrochemistry is ‘switched on’, the mass–flux boundary conditions (2.31)–
(2.36) reduce to no-flux conditions through the cell wall for z̄ < 0, and for z̄ > 0 we
have, at leading order for the O(1) mass fractions,

∂Yf0

∂r
= −ρ

2
0Yf0Ȳ w0

mw
,

∂Yw0

∂r
= −ρ2

0Yf0Ȳ w0,

∂Yh0

∂r
=

3ρ2
0Yf0Ȳ w0mh

mw
,
∂Ym0

∂r
=
ρ2

0Yf0Ȳ w0mm

mw
,

 (3.7)

and also Ywj = 0 for j = 0, 1, . . . , µ− 3. By combining appropriate multiples of these,
and taking the constant solutions for the combinations mwYf0 − Yw0, Yh0 + 3mhYf0

and Ym0 +mmYf0, as given by the input conditions, we can obtain values for the major
mass fractions in terms of the input values of methane and water,

Yf0 = Yf(in) − Yw(in)

mw
, Yh0 =

3mhYw(in)

mw
, Ym0 =

mmYw(in)

mw
at r = 1. (3.8)

The smaller mass fractions, carbon dioxide and oxygen, satisfy the equations

0 = −ρ
2
0k4Yd1Yh0

mh
+

2k7ρ
3
0Y

2
m0Yo1md

m2
mmo

, E0qe0 = ρ3
0Yo1

(
k5Y

2
h0

m2
h

+
k7Y

2
m0

m2
m

)
, (3.9)

which can be solved numerically. Using (3.2) we can use the expressions for the three
O(1) mass fractions (3.8) to give the value of ρ0 at r = 1,

ρ0 =

(
Yf(in)

mf
+
Yw(in)

mw

)/(
Yf(in)

mf
+

3Yw(in)

mw

)
. (3.10)

By matching with the anode region we find that the above boundary values for each
mass fraction and the mixture density must also hold at the downstream end of
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Figure 5. The leading-order density in the boundary layer. This was calculated using Q0 = 5.516.

the boundary layer as z̄ → ∞ for 0 6 r 6 1, and hence we will in future refer to
the density given by (3.10) as ρout. We now have boundary conditions for the whole
of the boundary layer and a set of leading-order equations for the mass fractions
(3.6). These are highly nonlinear and effectively coupled due to the appearance of
the leading-order expression for the mixture density ρ0. However we can obtain a
single equation for ρ0 by inverting both sides of (3.2) and noting that we can add
appropriate multiples of (3.6) to eliminate the mass fractions:

−1

r

∂

∂r

(
r
∂

∂r

(
1

ρ0

))
+ 1

2
Q0

[(
r2 − 1

) ∂
∂z̄

(
1

M10

)
−1

r

∂

∂r

(
1

ρ0

∂

∂z̄

(
Mr0

M10

))]
− ∂2

∂z̄2

(
1

ρ0

)
= 0. (3.11)

We will solve this numerically subject to the conditions,

1

ρ0

=
1

ρout
at r = 1 (z̄ > 0) and as z̄ →∞ (0 6 r 6 1), (3.12)

1

ρ0

= 1 as z̄ → −∞ (0 6 r 6 1), (3.13)

∂

∂r

(
1

ρ0

)
= 0 at r = 1 (z̄ < 0) and r = 0 (−∞ < z̄ < ∞). (3.14)

We will transform the infinite boundary layer domain −∞ < z̄ < ∞, 0 6 r 6 1 to the
finite domain 0 < z′ < 1, 0 6 r 6 1 by use of the transformation z′ = tanh (z̄/Q0),
which will produce a finer grid where the solution changes most rapidly, namely
close to the centre of the boundary layer. We evaluate ρ0 at r = ri = ik, i = 0 . . . p,
and z′ = zj = jk, j = −p . . . p, where p = 1/k and k is the stepsize. We discretize
using central differences away from the boundary and using forward or backward
differences as appropriate at the boundary. The integrals Mr0 and M10 are evaluated
using the trapezium rule. We then solve this nonlinear system using the NAG routine
C05NBF which uses a combination of steepest descents and Newtonian iteration to
find the solution. A typical numerically determined solution is shown in figure 5.
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Having computed a numerical solution for the leading-order density we can now
proceed to use this solution in finding numerical solutions for the leading-order mass
fractions. The leading-order equation for Yi0 is given by (3.6). Now that we have a
solution for ρ0 we can find numerical values for Mr0 and M10 which allow us to solve
for each Yi0 subject to the conditions

Yf0 → Yf(in), Yw0 → Yw(in), Yh0 → 0, Ym0 → 0 as z̄ → −∞, (3.15)

Yf0 → Yf(in) − Yw(in)

mw
, Yw0 → 0, Yh0 → 3mhYw(in)

mw
,

Ym0 → mmYw(in)

mw
as z̄ →∞, and at r = 1 for z̄ > 0,

 (3.16)

∂Yi0

∂r
= 0 at r = 1 for z̄ < 0 and at r = 0. (3.17)

We discretize as before, although now the integrals Mr0 and M10 are known as we
have a solution for ρ0. We could attempt to solve this equation numerically using the
NAG routine we used earlier. However, since the integral quantities are all known we
now have a system of linear equations which can in general be expressed as a vector
equation of the form A ·x = b. A Gauss–Seidel iteration method, which is guaranteed
to converge from any initial estimate provided the matrix A is diagonally dominant, is
used to obtain numerical solutions for the mass fractions. The solutions are shown in
figure 6. These illustrate how the mass fraction of water decreases from O(1) and the
mass fractions of hydrogen and carbon monoxide increase to O(1). The mass fraction
of methane decreases by a small amount due to consumption by the steam reforming
reaction. We can expect similar profiles for the leading-order terms in the oxygen and
carbon dioxide mass fractions, which will increase from zero at the upstream end of
the boundary layer to O(1) constants given by the numerically-obtained solutions to
the algebraic boundary conditions (3.9), which are discussed later when the anode
region is considered.

We are able to verify the numerical solutions against analytical asymptotic solutions
for large |z̄| in the boundary layer, where the equations can be linearized. This
approach leads us to an eigenvalue problem, and is described in the Appendix.

3.3. Higher-order solutions in the boundary layer at z = 0

We will now consider the solution for higher-order terms in the expansions for each
mass fraction and the density. This is for the purpose of asymptotic matching with
the solutions in the anode region. The O(ε) equations for each mass fraction in the
boundary layer are given as

−1

r

∂

∂r

(
r
∂Yi1

∂r

)
+

1

2
Q0

{(
r2 − 1

) ∂
∂z̄

[
1

M10

(
ρ1Yi0 + ρ0Yi1 − ρ0Yi0

M11

M10

)]
−1

r

∂

∂r

[
Yi1

∂

∂z̄

(
Mr0

M10

)
+ Yi0

∂

∂z̄

(
Mr1

M10

)
− Yi0 ∂

∂z̄

(
Mr0M11

M2
10

)]}
− ∂2Yi1

∂z̄2
= 0. (3.18)

If we consider the O
(
δ/ε
)

boundary conditions at r = 1, we again have ∂Yi1/∂r = 0
for z̄ < 0. However for z̄ > 0 we have

∂Yf1

∂r
= −ρ

2
0Ȳ w0Yf0

mw

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
, (3.19)
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Figure 6 (a, b) For caption see facing page.

∂Yw1

∂r
= −ρ2

0Ȳ w0Yf0

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
, (3.20)

∂Yh1

∂r
=

3ρ2
0Ȳ w0Yf0mh

mw

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
, (3.21)

∂Ym1

∂r
=
ρ2

0Ȳ w0Yf0mm

mw

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
. (3.22)

Adding appropriate multiples of these as earlier we again find that we can express
each mass fraction in terms of the input values, which at O(ε) are equal to 0. Hence
Yf1 = Ym1 = Yh1 = Yw1 = 0 at r = 1. These zero solutions also satisfy the main
equation in the boundary layer (3.18), so we take Yf1 = Ym1 = Yh1 = Yw1 = 0 for
−∞ < z̄ < ∞, 0 6 r 6 1. We will now proceed to find asymptotic solutions for
the O(ε2) terms of the major mass fractions as z̄ → ∞. These will be useful for the
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Figure 6. The solutions for the leading orders of four of the mass fractions in the boundary
layer: (a) methane, (b) hydrogen, (c) carbon monoxide, (d) water. These were calculated using
Q0 = 5.516.

purpose of matching in other regions. After simplification by using the leading-order
conditions for Yo and Yd, the mass-flux boundary condition for the O(ε2) term in the
water mass fraction is

∂Yw2

∂r
=

2E0qe0mw

mo
− ρ2

0Ȳ w2Yf0, (3.23)

where Yf0 is now known. We also know that Yw2 is zero throughout the boundary
layer, so ∂Yw2/∂r = 0 at r=1 and hence

Ȳ w2 =
2E0qe0mw

moρ
2
0Yf0

. (3.24)

This allows further simplification of the boundary conditions for the other three O(1)
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mass fractions:

∂Yf2

∂r
= −E0qe0

(
Yf0 +

2

mo

)
,

∂Yh2

∂r
= −E0qe0

(
Yh0 − 4mh

mo

)
,

∂Ym2

∂r
= −E0qe0

(
Ym0 − 2mm

mo

)
.

 (3.25)

Note that the leading-order electrochemical flux, qe0 = σ̄ − ln (ρ0Yo1) is constant, so
the right-hand side of each of these conditions is constant.

Now we consider the conservation-of-mass equation, and using the solutions for
the lower orders, which enable us to simplify the expressions Mr and M1, the equation
for Yi2 for large z̄ simplifies to

1

r

∂

∂r

(
r
∂Yi2

∂r

)
+ 2Q0(r

2 − 1)
∂Yi2

∂z̄
+
∂2Yi2

∂z̄2
= 0, (3.26)

which is of a similar form to the equations obtained earlier for Yi0. Labelling by Xi

the constant values of ∂Yi2/∂r at r = 1, as given in (3.25), we have the conditions

∂Yi2

∂r
= Xi at r = 1,

∂Yi2

∂r
= 0 at r = 0, (3.27)

and we suppose that the asymptotic behaviour of Yi2 for large z̄ is of the form
Yi2 ∼ z̄2f0(r) + z̄f1(r) + f2(r) where f0, f1 and f2 are to be determined. The boundary
conditions for these functions are

df2

dr
= Xi,

df1

dr
= 0,

df0

dr
= 0 at r = 1, (3.28)

df2

dr
= 0,

df1

dr
= 0,

df0

dr
= 0 at r = 0. (3.29)

Substituting the suggested form into (3.26) and applying these conditions we find the
solution

Yi2 ∼ 2Xi

Q0

z̄ + 4Xi

(
1
4
r2 − 1

16
r4 + γi

)
(3.30)

where γi is an unknown constant.
To summarize our work on the boundary layer at z = 0, the leading-order solutions

for each mass fraction in the boundary layer have been found numerically, and we
have verified them by using an analytical solution for large |z̄|. For the purpose of
matching with the solution in the next region we have also obtained the expressions
for the main mass fractions for large z̄,

Yf ∼ Yf(in) − Yw(in)

mw
+ ε2

{−2E0qe0

Q0

(
Yf(in) − Yw(in)

mw
+

2

mo

)
z̄

−4E0qe0

(
Yf(in) − Yw(in)

mw
+

2

mo

)(
1
4
r2 − 1

16
r4 + γf

)}
+ O(ε3), (3.31)

Yh ∼ 3mhYw(in)

mw
+ ε2

{−2E0qe0

Q0

(
3mhYw(in)

mw
− 4mh

mo

)
z̄

−4E0qe0

(
3mhYw(in)

mw
− 4mh

mo

)(
1
4
r2 − 1

16
r4 + γh

)}
+ O(ε3), (3.32)
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Ym ∼ mmYw(in)

mw
+ ε2

{−2E0qe0

Q0

(
mmYw(in)

mw
− 2mm

mo

)
z̄

−4E0qe0

(
mmYw(in)

mw
− 2mm

mo

)(
1
4
r2 − 1

16
r4 + γm

)}
+ O(ε3), (3.33)

where qe0 = σ̄ − ln (ρ0Y
∗
o1) and Y ∗o1 is the constant boundary value of Yo1.

4. Solution in the anode region 0 6 z 6 1

We can now consider the solution of the main equations in the O(1) anode region.
We know that the water mass fraction Yw = O(δ/ε2), so the leading-order boundary
condition for water gives ρ2

0Yf0Ȳ w0 = 0 at r = 1. Hence Ȳ w0 = 0 at r = 1 also. Due
to the presence of this factor in the other conditions we find

∂Yf0

∂r
=
∂Yh0

∂r
=
∂Ym0

∂r
= 0 at r = 1. (4.1)

Similarly, the second-order boundary condition for water gives

ρ2
0Ȳ w0Yf0

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
= 0 at r = 1, (4.2)

and since Ȳ w0 = 0 at r = 1 this implies Ȳ w1 = 0 at r = 1 also and in turn

∂Yf1

∂r
=
∂Yh1

∂r
=
∂Ym1

∂r
= 0 at r = 1. (4.3)

At O(δ) we again find that the first non-zero term in the expansion for the water
mass fraction on the anode boundary is

Ȳ w2 =
2E0qe0(z)mw

moρ
2
0Yf0

at r = 1, (4.4)

and again we can make one final simplification to the other O(ε2) conditions:

∂Yf2

∂r
= −E0qe0

(
Yf0 +

2

mo

)
,

∂Yh2

∂r
= −E0qe0

(
Yh0 − 4mh

mo

)
,

∂Ym2

∂r
= −E0qe0

(
Ym0 − 2mm

mo

)
.

 (4.5)

Referring back to the main equation (2.46), at O(δ/ε2) for Yw ,

1

r

∂

∂r

(
r
∂Ȳ w0

∂r

)
= 0, (4.6)

since the two terms which precede Ȳ w0 in the perturbation expansion are zero. This
gives Ȳ w0 = Ȳ w0(z) and since Ȳ w0 = 0 at r = 1 we have Ȳ w0 = 0 for all 0 6 r 6 1.
Similarly at O(δ/ε) we find Ȳ w1 = 0 and so at the next order we find Ȳ w2 = Ȳ w2(z).
Therefore by (4.4) we deduce that Ȳ w2(z) must take its value at r = 1:

Ȳ w2 =
2E0qe0(z)mw

moρ
2
0(z, 1)Yf0(z, 1)

. (4.7)

Now we can consider the O(1) mass fractions, Yf, Yh and Ym. As we found earlier,
at leading order there is no radial variation and so Yi0 = Yi0(z) for i = f, h, m,
which automatically satisfies the conditions ∂Yi0/∂r = 0 at r = 0, 1. By (3.2) we also
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have ρ0 = ρ0(z). This can be substituted into the O(ε) equation for Yi1, which after
simplification becomes

−1

r

∂

∂r

(
r
∂Yi1

∂r

)
+ 2Q0(1− r2)

dYi0
dz

= 0. (4.8)

We can integrate this and use the conditions that ∂Yi1/∂r = 0 at r= 0 and r= 1 to
deduce that dYi0/dz = 0, and hence Yi0 and ρ0 are constant, and Yi1 = Yi1(z), which
gives us also that ρ1 = ρ1(z). We can now simplify the expression for Ȳ w2 (4.7):

Ȳ w2 =
2E0qe0(z)mw

moρ
2
0Yf0

, (4.9)

where now the only possible variable is qe0(z).
Now let us consider the main equation at O(ε2). Making use of the properties of

Yi0, Yi1, ρ0 and ρ1 already found we have

−1

r

∂

∂r

(
r
∂Yi2

∂r

)
+ 2Q0(1− r2)

dYi1
dz

= 0, (4.10)

which is similar to the simplified equation at O(ε). Integrating as before and applying
the symmetry condition we find

∂Yi2

∂r
= 2Q0

(
1
2
r − 1

4
r3
) dYi1

dz
. (4.11)

When we apply the boundary conditions at r = 1, which are given by (4.5), we obtain

1

2
Q0

dYf1

dz
= −E0qe0(z)

(
Yf0 +

2

mo

)
, (4.12)

1

2
Q0

dYh1
dz

= −E0qe0(z)

(
Yh0 − 4mh

mo

)
, (4.13)

1

2
Q0

dYm1

dz
= −E0qe0(z)

(
Ym0 − 2mm

mo

)
, (4.14)

which hold at r = 1. However since Yi1 = Yi1(z) these must also hold for 0 6 r 6 1.
Integrating with respect to z,

Yf1 = −2E0

Q0

(
Yf0 +

2

mo

)∫ z

0

qe0(s) ds+ cf, (4.15)

Yh1 = −2E0

Q0

(
Yh0 − 4mh

mo

)∫ z

0

qe0(s) ds+ ch, (4.16)

Ym1 = −2E0

Q0

(
Ym0 − 2mm

mo

)∫ z

0

qe0(s) ds+ cm, (4.17)

where cf , ch and cm are constants which will be determined.
We now consider the mass fractions of oxygen and carbon dioxide, which are O(δ).

At leading order, as for the other species, we find no radial variation and so we look
to the boundary condition at r = 1. The leading-order boundary conditions for these
species are

0 = −k4ρ
2
0Yd1Yh0

mh
+

2k7mdρ
3
0Y

2
m0Yo1

m2
mm0

, E0qe0 = ρ3
0Yo1

(
k5Y

2
h0

m2
h

+
k7Y

2
m0

m2
m

)
. (4.18)
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Note that they take the form of algebraic equations rather than differential equations.
This is because these two species are not involved in the steam reforming reaction,
which rules out the possibility of a leading-order balance between a diffusive term
and a reactive term in the boundary conditions. Note that the oxygen condition
is of the form a − ln (Yo1) = bYo1 where a and b are constants. This is because
qe0 = σ̄ − ln (ρ0Yo1). Since b > 0 we can deduce that this equation has a unique
solution. Furthermore this solution, which can easily be found numerically using
Newton–Raphson iteration, is independent of z, which means that Yo1 is constant
throughout the anode region. Labelling this constant value Y ∗o1, we can substitute it
into the carbon dioxide condition to obtain the constant solution Y ∗d1 to the carbon
dioxide mass fraction. Since the only possible axial variation in qe0 comes from the
oxygen mass fraction, which we now know is constant at leading order, we deduce
that qe0 is constant. Hence

∫ z
0
qe0(s) ds = qe0z and so the O(ε) terms for Yf, Yh and Ym

(4.15)–(4.17) are linear functions of z,

Yf1 = −2E0

Q0

(
Yf0 +

2

mo

)
qe0z + cf, (4.19)

Yh1 = −2E0

Q0

(
Yh0 − 4mh

mo

)
qe0z + ch, (4.20)

Ym1 = −2E0

Q0

(
Ym0 − 2mm

mo

)
qe0z + cm. (4.21)

To summarize the solutions in the anode region,

Yf = Yf0 + ε

(
−2E0

Q0

(
Yf0 +

2

mo

)
qe0z + cf

)
+ O(ε2), (4.22)

Yh = Yh0 + ε

(
−2E0

Q0

(
Yh0 − 4mh

mo

)
qe0z + ch

)
+ O(ε2), (4.23)

Ym = Ym0 + ε

(
−2E0

Q0

(
Ym0 − 2mm

mo

)
qe0z + cm

)
+ O(ε2), (4.24)

Yw = δ
2E0mwqe0

moρ
2
0Yf0

+ O(δε), (4.25)

Yo = δY ∗o1 + O(δε), (4.26)

Yd = δY ∗d1 + O(δε). (4.27)

In order to match the O(ε) terms we consider the boundary layer solutions as
z̄ → ∞. By matching the O(1) terms, we find that the leading-order terms Yi0 are
precisely the values given by the solution to the boundary conditions in the boundary
layer, and by matching at O(ε) we obtain cf = ch = cm = 0, and so we can complete
the first two terms in the anode region solution,

Yf = Yf(in) − Yw(in)

mw
− ε2E0qe0z

Q0

(
Yf(in) − Yw(in)

mw
+

2

mo

)
+ O(ε2), (4.28)

Yh =
3mhYw(in)

mw
− ε2E0qe0z

Q0

(
3mhYw(in)

mw
− 4mh

mo

)
+ O(ε2), (4.29)
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Ym =
mmYw(in)

mw
− ε2E0qe0z

Q0

(
mmYw(in)

mw
− 2mm

mo

)
+ O(ε2), (4.30)

Yw = δ
2E0mwqe0

moρ
2
0

(
Yf(in) − Yw(in)/mw

) + O(δε), (4.31)

Yo = δY ∗o1 + O(δε), (4.32)

Yd = δY ∗d1 + O(δε). (4.33)

5. Solution in the downstream region z > 1

In this region there is no electrochemical flux of oxygen ions and no chemical

reaction. The quantity
∫ z

0
qe0(s) ds takes its final value

∫ 1

0
qe0(s) ds = qe0 = σ̄−ln (ρ0Yo1)

at leading order. This quantity is proportional to the total dimensionless current (and
also the total dimensionless electrochemical flux of oxygen by (2.1)). We omit many
of the details of the analysis in this region, as the equations are similar to those
for the upstream region z < 0. As before we find that all mass fractions Yi are
constant up to exponential order. However, in order to match with the solutions in
the preceding anode region, where the O(ε) correction has a non-zero derivative, we
must introduce a boundary layer centred on z = 1. This boundary layer also has
thickness O(ε). Writing z = 1 + εẑ, we find that the leading-order boundary layer
equations are exactly as for the boundary layer at z = 0. We have the usual conditions
∂Yi/∂r = 0 at r = 1 for ẑ > 0 and r = 0 respectively, as well as the now familiar
mass-flux conditions given by (3.7) at r = 1 for ẑ < 0. However, from matching
with the solution in the anode region we have Yw0 = 0 and hence ∂Yw0/∂r = 0 and
in turn ∂Yi0/∂r = 0 at r = 1 for i = f, h, m, since each of the mass-flux conditions
has the factor ρ2

0Yf0Ȳ w0. Similarly for the O(ε) boundary conditions, since Yw1 = 0
throughout the anode region we have ∂Yw1/∂r = 0 and so for this to hold at r = 1
we deduce that

−ρ2
0Ȳ w0Yf0

(
Yf1

Yf0

+
2ρ1

ρ0

+
Ȳ w1

Ȳ w0

)
= 0, (5.1)

and so ∂Yi1/∂r = 0 at r = 1 for i = f, h, m. We take the constant solution for the first
two terms in the expansions for Yf, Yh and Ym. As well as satisfying the equations and
all boundary conditions they also match with the (constant) downstream solutions as
ẑ → ∞. We can also match this with the anode solutions as ẑ → −∞. In effect this
second boundary layer simply allows us to adjust the non-zero gradient at O(ε) to
zero, in the solutions for the major three mass fractions. This gradient becomes part
of the O(ε3) term when we make the substitution z = 1 + εẑ in the anode solution.
Hence the final solutions at output in the downstream region are

Yf = Yf(in) − Yw(in)

mw
− ε2E0qe0

Q0

(
Yf(in) − Yw(in)

mw
+

2

mo

)
+ O(ε2), (5.2)

Yh =
3mhYw(in)

mw
− ε2E0qe0

Q0

(
3mhYw(in)

mw
− 4mh

mo

)
+ O(ε2), (5.3)

Ym =
mmYw(in)

mw
− ε2E0qe0

Q0

(
mmYw(in)

mw
− 2mm

mo

)
+ O(ε2). (5.4)
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Figure 7. Comparison of the numerical (solid line) and analytical (dashed line) solutions for the
water mass fraction Yw: (a) r = 1, (b) r = 1

2
.

6. Numerical solution
We next consider the possibility of finding numerical solutions of the full nonlinear

problem. These will be used to confirm our asymptotic analysis. The unperturbed
conservation of mass equation for Yi is given by (2.46). We will solve this numerically
in the domain 0 6 r 6 1, − 1

2
6 z 6 3

2
, so we in effect consider the upstream and

downstream regions for half an anode length, the anode region being 0 6 z 6 1.
The equations are discretized by writing the independent variables as r= ri = ik (i =
0, 1 . . . p) and z = zj = jk (j = −p/2,−p/2 + 1 . . . 3p/2), where k is the stepsize and
p = 1/k. As in the earlier numerical work in the boundary layer at z = 0, central
differences are used to represent the derivatives, with forward or backward differences
as appropriate at the boundary. The trapezium rule is used to represent the integral
quantities. Since the mass-flux boundary conditions for each mass fraction are coupled
we have to solve for all six mass fractions simultaneously, although the condition∑

i Yi = 1 allows us to consider just five. We shall use (3.2) to express the density
in terms of the mass fractions. The system of five second-order partial differential
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equations is solved subject to the upstream conditions Yf = Yf(in), Yw = Yw(in), Yh =
Ym = Yo = Yd = 0 at z = − 1

2
and the downstream conditions ∂Yi/∂z = 0 at z = 3

2
.

On the central axis of the tube at r = 0 we have ∂Yi/∂r = 0 and at r = 1 we have
the mass-flux boundary conditions (2.31)–(2.36). The system is solved using the NAG
routine C05NBF and the solutions exhibit many of the features of the analytical
solutions, with a boundary layer structure at the beginning of the anode allowing the
major changes in each mass fraction to take place. Two examples of the comparison
between the numerical and analytical results are illustrated in figure 7. The numerical
solutions used ε = 0.1, σ = 22.8 and Rs = 1.707× 10−4.

7. Comparison with experimental results
The cell, as described earlier, is housed in a custom-built furnace operated by

a Eurotherm 822 controller which allows linear temperature control from room
temperature up to 1373 K. Since yttria-stabilized zirconia is a good thermal insulator,
the ends of the electrolyte tube which project beyond the outer walls of the furnace
remain sufficiently cool for a gas-tight seal to be made with the stainless steel manifold
using a silicone-rubber sealant. The cell inlet is connected to the gas manifold, which
allows complete flexibility in the choice of the fuel-to-steam ratio, as well as the fuel
itself. The gas stream can be instantly switched between various gas combination
mixtures, enabling evaluation over a wide range of operating conditions and fuel
compositions. When measurements are required we use a helium buffer to reduce the
concentrations of mixture components to a level which the mass spectrometer can
measure accurately. In this comparison the gas consists of 90% helium which, being
inert, remains unreacted throughout the tube. The reactor outlet is linked to an on-line
quadrupole mass spectrometer which allows the reactions to be directly studied. The
electrical performance of the cell was measured using a custom-built potentiostat,
allowing any operating potential between 0 and 1.5 V. We have experimental data
on the variation of each of the mass fractions at the outlet of the cell with cell
voltage, and the corresponding current variation. All results presented are for a cell
temperature of 1173 K, using a methane-to-steam molar fraction ratio of 5. We can
express the leading-order electrochemical flux qe0 as

qe0 = − 4F

RT
Ecell + ln

(
ρaYoah

2

amfρ0

)
+ ln

(
k1

DYo1

)
, (7.1)

where the logarithmic term has been split into two logarithms, one of known quantities
and another containing two unknown quantities k1 and D and the oxygen mass
fraction Yo1. Our results have shown that Yo1 is independent of z and so we can
integrate the dimensionless form of (2.5) easily to obtain

I =
πahRT

2FRs

(
ln

(
ρaYoah

2

ρ0amf

)
+ ln

(
k1

DYo1

))
− 2πah

Rs
Ecell . (7.2)

We will assume that Yo1 varies with the cell potential via Yo1 = α exp (−βEcell + γ)
where α, β and γ are unknown constants. Numerical experiments indicate that this
is an acceptable assumption for positive O(1) values of β. This allows us to form
a linear relationship between current and cell potential, from which we can obtain
expressions for the specific resistance Rs in terms of β and the combination k1/Dα
in terms of γ by using a least-squares fit to the experimental data. This least-squares
fit is shown with the corresponding experimental data in figure 8. We can now use
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Figure 8. The experimentally-obtained values for the current drawn from the cell against cell
voltage. The straight line of best-fit I = 0.4905− 0.4202Ecell is also shown.

these values to give linear expressions in Ecell for the output values of the O(1) mass
fractions,

Yf = Yf(in) − Yw(in)

mw
− ε2E0

Q0

((
β − 4F

RT

)
Ecell

+ ln

(
ρaYoah

2

amfρ0

)
+ ln

(
k1

Dα

)
− γ
)(

Yf(in) − Yw(in)

mw
+

2

mo

)
, (7.3)

Yh =
3mhYw(in)

mw
− ε2E0

Q0

((
β − 4F

RT

)
Ecell

+ ln

(
ρaYoah

2

amfρ0

)
+ ln

(
k1

Dα

)
− γ
)(

3mhYw(in)

mw
− 4mh

mo

)
, (7.4)

Ym =
mmYw(in)

mw
− ε2E0

Q0

((
β − 4F

RT

)
Ecell

+ ln

(
ρaYoah

2

amfρ0

)
+ ln

(
k1

Dα

)
− γ
)(

mmYw(in)

mw
− 2mm

mo

)
. (7.5)

These straight lines are shown in figure 9 along with the experimental data. The
figures show that our model has predicted trends for the variation of the major mass
fractions with the cell potential in good agreement with the experimental results.
However, the predicted variation with respect to cell potential is not as large as has
been observed experimentally.

8. Conclusions
Our analysis has shown that we can model the flow and reaction processes in a

loaded tubular solid oxide fuel cell. Our analytical solutions are consistent with the
numerical analysis and show reasonable agreement with experimental results. The
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Figure 9. The solutions for the three O(1) mass fractions as functions of cell voltage. The
experimental data are represented by the dots.

next stage in our work will be to introduce several new features into the model in
order to obtain better agreement with the experiments. First, it would appear that
the reversibility of the water–gas shift reaction (1.2) may require consideration. The
resulting extra carbon dioxide that is produced may force us to alter the assumptions
made about the order of magnitude of this species. Secondly, the effects of carbon
formation have so far been neglected. Carbon can form on the anode surface through
various reactions, the two most important of which are

2CO
 CO2 + C (the Boudouard reaction), (8.1)

CH4 
 C + 2H2 (pyrolysis of methane). (8.2)

Carbon formation via pyrolysis can block the electrodes and impair the efficiency of
the cell. However, it is understood that when large currents are drawn the cell can
be in effect ‘self-cleaning’ and remove the carbon. Our future work will involve the
investigation of this effect via the introduction of reactions (8.1) and (8.2). Thirdly, we
will consider the effect of one more reaction. As outlined in the introduction, methane
can also be consumed by the process of partial oxidation, in which methane reacts
directly with the oxygen brought in through the zirconia, as hydrogen and carbon
monoxide do in our present model. We will therefore introduce the reaction

2CH4 + O2 
 2CO + 4H2. (8.3)

With these extra considerations, it is expected that we can obtain a more physically
realistic model and achieve better agreement with the experimental results.
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Appendix. Comparison between the numerical and analytical solutions
of the anode front boundary layer equations

We expect that ρ0 → 1 as z̄ → −∞ and ρ → ρout as z̄ → ∞. We can use this to
simplify the nonlinear equation (3.11) and find an asymptotic solution for large |z̄|.
Moreover this can be used to check our numerical solution. Consider the behaviour
of ρ0 as z̄ → −∞. Writing ρ0 = 1 + ρ̄0, where ρ̄0 is a small correction term, we can
simplify Mr and M1 to

Mr =

∫ r

0

(s3 − s)ρ0(s, z̄) ds = 1
4
r4 − 1

2
r2 +

∫ r

0

(s3 − s)ρ̄0(s, z̄) ds, (A 1)

M1 =

∫ 1

0

(s3 − s)ρ0(s, z̄) ds = − 1
4

+

∫ 1

0

(s3 − s)ρ̄0(s, z̄) ds. (A 2)

When (A 1) and (A 2) are substituted into (3.11), we obtain the linearized equation
for ρ̄0:

1

r

∂

∂r

(
r
∂ρ̄0

∂r

)
+ 2Q0

(
r2 − 1

) ∂ρ̄0

∂z̄
+
∂2ρ̄0

∂z̄2
= 0. (A 3)

The same equation arises at leading order if we consider the behaviour of ρ0 as z̄ →∞
by writing ρ0 = ρout + ρ̄0. Hence for large |z̄| we have the linear partial differential
equation (A 3) and the conditions

ρ̄0 → 0 as z̄ → ±∞ (0 6 r 6 1), (A 4)

ρ̄0 = 0 at r = 1 (z̄ > 0), (A 5)

∂ρ̄0

∂r
= 0 at r = 0 (−∞ < z̄ < ∞) and r = 1 (z̄ < 0). (A 6)

We will present the analysis for z̄ → −∞, although the corresponding work for z̄ →∞
is similar. We suppose that we can find separable solutions of the form

ρ̄0 =

∞∑
j=0

aje
µj z̄R−j (r) (A 7)

where 0 < µ0 < µ1 < µ2 . . . are eigenvalues which are to be determined. We can

simplify the analysis by making the transformation r = λr̄ where λ =
(
2Q0µj

)−1/4
and

for convenience writing αj = λ2
(
µ2
j − 2Q0µj

)
. When (A 7) is substituted into (A 3) we

obtain

d2R−j
dr̄2

+
1

r̄

dR−j
dr̄

+
(
αj + r̄2

)
R−j = 0. (A 8)

Note that the boundary conditions (A 6) become ∂ρ̄0/∂r̄ = 0 at r̄ = 0 and r̄ = 1/λ. We
seek to use the method of Frobenius to obtain a power series solution for R−j . If we

write R−j =
∑∞

n=0 anr̄
n+c we obtain a complicated three-step recurrence relation. We

can avoid this by writing R−j = exp (īr2/2)Y (r̄) which further simplifies the differential
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Figure 10. The first eigenfunction R−0 (r̄).

equation to

d2Y

dr̄2
+

(
2īr +

1

r̄

)
dY

dr̄
+
(
2i + αj

)
Y = 0. (A 9)

Now we can apply Frobenius’ method using the power series expansion Y =∑∞
n=0 anr̄

n+c. When this is substituted into (A 9) we find that the indicial equation
is given by a0c

2 = 0 which has the double root c = 0. In general this implies that
the second linearly independent solution has a logarithmic factor, but we can ignore
this since we require a solution which is bounded as r → 0. Using c = 0, we find that
a2n+1 = 0 and

a2n =

a0(− 1
4
i)n

n∏
k=1

(
αj + 2i (2k + 1)

)
(n!)2

for n = 0, 1, 2 . . . . (A 10)

Hence the eigenfunction R−j can be written as

R−j (r̄) = exp

(
īr2

2

) ∞∑
n=0

a0(− 1
4
i)n

n∏
k=1

(
αj + 2i (2k + 1)

)
(n!)2

r̄2n. (A 11)

By differentiating with respect to r̄ we see that the condition at r̄ = 0 is automatically
satisfied and in order to satisfy the other condition we have an eigenvalue problem
to solve for µj ,

exp

(
i

2λ2

) ∞∑
n=0

(
(− 1

4
)n

a0

(n!)2

n∏
k=1

(αj + (2k − 1)2i)
(
2nλ1−2n + iλ−1−2n

))
= 0, (A 12)

where λ = (2Q0µj)
−1/4 and αj = λ2(µ2

j − 2Q0µj). Despite the presence of the imaginary
number i we find that R−j (r̄) is in fact a real expression. Using MapleV we are able to
show that the imaginary part is zero and, working with the real part only and taking
the summation to 50 terms, we can determine the first eigenvalue as µ0 = 3.960 to
4 significant figures. The corresponding value of 1/λ, which gives us the transformed
position of the anode on the wall of the tube, is 2.571. The eigenfunction R−0 (r̄) is
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Figure 11. The logarithmic plot of ln (1 − ρ0(0, z̄)) for z̄ < 0 and ln (ρ0(0, z̄) − ρout) for z̄ > 0. We
can see that this compares well with the straight lines with gradients given by the eigenvalues for
the two regions.

shown in figure 10. We can proceed to find more eigenvalues, but as these will all be
greater than µ0, and our solution is asymptotically valid for large but negative z̄, the
dominance of the contribution from the first eigenvalue will be enough to render the
other contributions negligible. Hence we conclude that, as z̄ → −∞,

ρ0 ∼ 1 + A0 exp (µ0z̄)R
−
0 (r̄) + o (exp (µ0z̄)) (A 13)

where the constant A0 < 0 remains undetermined. The main benefit of this analysis is
that we can compare the first eigenvalue with our numerical results to gain confidence
in the numerical scheme we used.

We took the numerical data we have for the leading-order density ρ0, given in figure
5, and used the values given in the plane r = 0, where the contribution from the
eigenfunctions is always equal to 1, to create a two-dimensional plot. The z′ coordinate
was transformed back to the original boundary layer variable z̄ by z̄ = Q0 tanh−1 (z′)
and for z̄ < 0 we plotted ln (1−ρ0(0, z̄)) on the vertical axis, and for z̄ > 0 we plotted
ln (ρ0(0, z̄)− ρout). By taking the natural logarithm of (A 13) we can see that this will
produce straight line graphs in each half of the plane with gradients which correspond
to the eigenvalues obtained in the analysis. The resulting straight line graphs are shown
in figure 11. The measured gradients of these graphs are 4.0 for z̄ < 0 (compared with
the eigenvalue 3.960) and −0.62 for z̄ > 0. Note that in this region a similar analysis
to the above gave an eigenvalue σ0 = 0.6194 to 4 significant figures. Hence there is
agreement with the eigenvalues to 3 decimal places. The figure also shows the lines
y = µ0z̄ for z̄ < 0 and y = −σ0z̄ for z̄ > 0, which go through the origin. This shows
how good the agreement is between the numerical and analytical solutions.
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